论文名称: Low-Light Enhancement Network with Global Awareness
论文作者: Wenjing Wang, Chen Wei, Wenhan Yang, Jiaying Liu
这是一篇讲解使用神经网络进行低照度增强的论文。
- 先对图像的光照进行估计,根据估计的结果来调整原图像
- 调整过程中会对图像中的细节重构,以便得到更加自然的结果。
Abstract (摘要)
In this paper, we address the problem of lowlight enhancement. Our key idea is to first calculate a global illumination estimation for the low-light input, then adjust the illumination under the guidance of the estimation and supplement the details using a concatenation with the original input. Considering that, we propose a GLobal illuminationAware and Detail-preserving Network (GLADNet). The input image is rescaled to a certain size and then put into an encoder-decoder network to generate global priori knowledge of the illumination. Based on the global prior and the original input image, a convolutional network is employed for detail reconstruction. For training GLADNet, we use a synthetic dataset generated from RAW images. Extensive experiments demonstrate the superiority of our method over other compared methods on the real low-light images captured in various conditions.
本文主要解决了低照度增强的问题,关键的思想是输入一张低照度图像进行全局光照估计,然后在估计所得的指导下对亮度进行调整,并于原始图像连接来补充细节。 提出了GladNet,输入图像resize成一定的大小,放入Encoder-Decoder网络中,以生成的光照作为先验基础。将先验结果与原图输入卷积神经网络进行细节重构。